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Abstract

The evolution of an inertial fusion energy (IFE) chamber involves a repetition of short, intense depositions of energy
(from target ignition) into a reaction chamber, followed by the turbulent relaxation of that energy through shock waves
and thermal conduction to the vessel walls. We present an algorithm for 2D simulations of the fluid inside an IFE chamber
between fueling repetitions. Our finite-volume discretization for the Navier–Stokes equations incorporates a Cartesian grid
treatment for irregularly-shaped domain boundaries. The discrete conservative update is based on a time-explicit Godunov
method for advection, and a two-stage Runge–Kutta update for diffusion accommodating state-dependent transport prop-
erties. Conservation is enforced on cut cells along the embedded boundary interface using a local redistribution scheme so
that the explicit time step for the combined approach is governed by the mesh spacing in the uniform grid. The test prob-
lems demonstrate second-order convergence of the algorithm on smooth solution profiles, and the robust treatment of
discontinuous initial data in an IFE-relevant vessel geometry.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In inertial confinement fusion scenarios, a small target containing frozen deuterium and tritium (DT) is
compressed and heated to fusion temperatures by powerful laser or particle beams. With the careful design
of the target and beam pulses, a fusion burn can be initiated in the target, which subsequently releases large
quantities of energy into its surrounding environment. The energy must then be removed from the chamber
housing the target and beam lines, and the environment inside the chamber returned to a quiescent state so
that a new fusion target may be positioned for the next cycle. In an inertial fusion energy (IFE) system, it
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is envisioned that this process will be repeated at a frequency of approximately 5–10 Hz. In order to analyze
and design such systems, it is therefore necessary to understand the time-dependent response of the chamber
environment between target ignitions over these time scales.

There are two phases that characterize the IFE chamber evolution and relevant energy transfer. The IFE
target is ignited essentially instantaneously (over less than a nanosecond) and its energy is released in the
chamber in the form of X-rays (mainly bremsstrahlung radiation), neutrons (fusion products), and ions (both
fusion products and target debris). The first phase of chamber evolution, lasting up to a few microseconds,
includes the transport of this energy through the chamber fill gas toward the vessel walls. The fill gas absorbs
a portion of the radiated energy, helping to reduce the peak energy flux transmitted to the vessel wall. During
this process, peak temperatures in the chamber may reach 1 keV or more, but then quickly decay to a few eV
predominantly through radiative transport processes. A significant fraction of the energy is dissipated as well
through slower hydrodynamic processes, such as shock waves, which propagate throughout the chamber. This
first phase after ignition is known as the ‘‘fast phase’’, and is immediately followed by a much longer period of
time, the ‘‘slow phase’’ over which convection and shock hydrodynamics distribute energy throughout the
chamber and to the vessel wall. The slow phase extends for 100–200 ms or longer until the next target is
inserted and ignited to initiate the process over again, and is the focus of the present study.

Because of the vastly disparate time scales and dominant physical phenomena, studies of the heat transport
problem for IFE target chambers may be similarly separated into the two phases discussed above. The envi-
ronment in the slow-evolution phase has a sufficiently low temperature to allow reasonable modeling with the
compressible Navier–Stokes equations. Due to the longer time scales involved however, multi-dimensional
geometry effects become important in this phase as the fluid interacts with the vessel wall containing various
beam access ports.

An extensive overview of approaches to modeling the IFE chamber physics is given in Ref. [1]. Several com-
puter codes have been used to model the chamber environment behavior. BUCKY is a one-dimensional radi-
ation-hydrodynamics code [2] that has been used to model blast-wave propagations through IFE chambers,
laser-ablation-driven shocks in gases, and X-ray-driven shocks in solids. BUCKY results are used in this study
as a model for the fast-phase physics, and to provide initial conditions for a longer-time simulation of slow
phase chamber relaxation.

TSUNAMI (transient shockwave upwind numerical analysis method for inertial confinement fusion) [3] is a
two-dimensional gas dynamics code and has been used to model the slow phase of IFE chamber evolution
using the Euler equations for polytropic gas dynamics. Because the code treats the fluid as an inviscid, non-
conducting ideal gas with constant specific heat and no radiation transport, it is most useful for studying the
early stages of the slow phase prior to the onset of significant transport effects. Recently, researchers at Osaka
University’s Institute of Laser Engineering have used a DSMC (Direct Simulation Monte Carlo) code to
model the KOYO IFE power plant chamber [4]. This DSMC code was developed by NASA and integrates
Boltzmann’s equations directly. While DSMC algorithms require numerical grid sizes comparable to the col-
lisional mean free path (and therefore have limited utility for full-scale device simulations) they nevertheless
are useful in assessing the effects of transport in low-pressure systems. Ref. [4] includes a comparison of
DSMC simulation results in a parameter range relevant to the KOYO IFE chamber with those performed
using the invicid TSUNAMI code. These comparisons demonstrated that many key solution features, partic-
ularly in long-time system evolutions of interest here, are not properly captured when conduction and viscous
transport is neglected.

In this paper, we present a new simulation approach for the slow-phase of IFE chamber dynamics that
includes the important effects of diffusive energy and momentum transport, while also incorporating full-scale
multi-dimensional IFE chamber geometries. Our simulation approach represents the assembly of several well-
characterized algorithmic components that enable the study of a broad range of timescales and fluid–chamber
interactions throughout the slow-phase chamber evolution. The core numerical scheme is based on a Cartesian
grid Godunov integration method [5] developed for the inviscid Euler equations (hereafter referred to as the
‘‘base scheme’’). In the Cartesian grid approach, irregular (cut) cells are formed at the intersection of the uni-
form mesh and the problem domain boundary, and state variables are defined at the geometric centers of the
rectangular mesh. In cells away from the embedded boundary, the difference algorithm in the base scheme
reduces to a time-explicit second-order algorithm for advection. Fluxes into the cut cells are treated in a
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post-processing step that ensures temporal stability, consistency and accuracy. Stability of the overall integra-
tion scheme is governed by a time step condition that is based on the cell size in the uniform mesh. Back-
ground literature justifying this approach for compressible gas dynamics, and details of implementation of
the base scheme are discussed at length in the reference. We have improved the accuracy of the base scheme
in the cut cells through the use of a flux interpolation procedure outlined in Ref. [6], and added the ability to
treat diffusion terms (viscosity and conduction) using ideas which first appeared in Ref. [7] related to Cartesian
grid methods for Poisson’s equation. Variable transport properties in the evolution of the parabolic diffusion
terms are incorporated with an iterative, time-explicit Runge–Kutta method. Like the base method, implemen-
tation of our combined solution approach is well-suited for incorporation into a block-structured adaptive-
grid algorithm, and is extensible to three dimensions. Detailed convergence analyses and a sample application
relevant to IFE chamber scenarios are used to validate the assembled algorithm in a simplified two-dimen-
sional, non-adaptive setting.

2. Model and numerical algorithm

The compressible Navier–Stokes equations may be written for an ideal polytropic gas with viscosity, l, and
conductivity, k:
qt þr � q~u ¼ 0;

ðq~uÞt þr � ðq~u~uÞ þ rp ¼ r � s;
ðqEÞt þr � ððqE þ pÞ~uÞ ¼ r � ðs �~uþ krT Þ;

s ¼ l r~uþrT~u� 2

3
ðr �~uÞI

� �
.

ð1Þ
Here, q is the mass density,~u ¼ ux̂þ vŷ is the velocity, E ¼ CvT þ~u �~u=2 is the total energy, Cv is the specific
heat of the gas at constant volume, p = qRT is the pressure, and s is the stress tensor.

A Cartesian grid finite volume discretization for hyperbolic flow was described in detail in Ref. [5], and will
serve here as the basis of our generalized integration algorithm. A summary of the ‘‘base scheme’’ helps to
define a suitable context for us to use in the subsequent presentation of our algorithm enhancements. These
enhancements increase the accuracy of the base scheme along embedded boundaries, and incorporate diffusive
transport terms into the momentum and energy conservation equations. To further clarify the discussion here,
we present the base scheme as a uniform-grid discretization that is then augmented with modifications to
account for the presence of partial grid cells along the embedded boundary.
2.1. Base uniform grid discretization

Eqs. (1) may be written in conservation form
Ut þ F ðUÞx þ GðUÞy ¼ 0; ð2Þ
where U = {q,qu,qv,qE} is the state vector, and F and G are the fluxes in the x̂ and ŷ directions, respectively.
Each component direction of the fluxes may be written as a sum of advection and diffusion components. For
example, F = FA + FD, where FA = {qu,qu2 + p,quv,quE + up}. If l = k = 0, the system is hyperbolic and we
recover the model discretized in Ref. [5].

Following Ref. [5], the hyperbolic component of Eq. (1) is integrated in time with a second-order time-
explicit Godunov method from t = tn to tn+1 = tn + Dt on a uniform grid, spaced (Dx,Dy) in the ðx̂; ŷÞ direc-
tions, respectively. The advection fluxes are centered in time at tn+1/2, and in space at the geometric center of
the faces bounding each cell. The fluxes are evaluated using data extrapolated in space and time from the cen-
ters to the faces of each cell. Prior to extrapolation, the state vector, U, is transformed into primitive variables,
Q = {q,u,v,p} using a polytropic (constant ratio of specific heats, c = 1.4) equation of state. The extrapola-
tions from cell centers to face centers are evaluated in terms of derivatives only in space at time tn by substi-
tuting the model equations (1) to replace the time derivative. Double-valued face states are generated by
extrapolating data from cell centers on both sides of the interface, and are resolved with the approximate
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Riemann solver discussed in Ref. [8]. The resulting primitive edge state is used to construct second-order
conservative advection fluxes, which are scaled by the respective face area and time increment, Dt, and then
differenced across each cell to form a volume-weighted advective forcing, SA, for the state update for each cell:
Uðtnþ1Þ ¼ UðtnÞ � Dt
V

SA;

SA ¼ F A
r Ar � F A

‘ A‘

� �
þ GA

t At � GA
b Ab

� �
.

ð3Þ
The subscripts r, ‘, t, b refer to the right, left, top and bottom face of the cell, respectively, A# is the area of the
#th face, and V is the volume of the cell (=Dx · Dy). This algorithm is time-explicit, and stable only for
Dt < min(Dx/kx,Dy/ky), where k# = max(|k#,j|) and k#,j are the eigenvalues of the flux Jacobian for the advec-
tive transport in the #th-direction.

2.2. Cut cell modifications in the base scheme

In order to extend the second-order Godunov algorithm to the Cartesian grid case, geometrical information
about the cut cells must be included in the area and volume terms in Eq. (3). This includes partial cell volumes
and edge areas, specified as fractions of the respective quantities from the underlying uniform grid. We must
also accommodate fluxes through the interface in cut cells separating the fluid and body regions.

The volume fraction, K, at each mesh location is the ratio of cell volume inside the flow domain to total cell
volume (e.g., K = 1 for cells entirely inside the domain, K = 0 for cells in the uniform mesh but completely
outside the fluid domain). The area fraction a indicates the portion of a cell face inside the flow domain.
The quantities K and a may be extracted for realistic flow geometries by tools, such as Cart3D [9], that can
process the output of computer-aided drawing packages. However, the geometries used in the examples here
are simple enough that the requisite data may be generated with a few lines of computer code.

A straightforward application of Eq. (3) to the case of partial cells leads to an update for U which involves a
division by K, and is numerically unstable for fixed Dt and K! 0. A method to circumvent this stability issue,
as suggested in Ref. [5], involves the calculation of an alternative update, the so-called ‘‘reference’’ state, by
using Eq. (3) without accounting specifically for the reduction in face areas and cell volume. The reference
state will be stable and mathematically consistent with Eqs. (1), but not discretely conservative. The computed
difference between the reference state and the update via Eq. (3) with proper area and volume reductions pro-
vides the degree to which the former update violates conservation in each field quantity. A stable, consistent
and conservative update is formed by redistributing this error over nearby cells in the fluid (see Ref. [10]).

Computation of the reference state requires that face-centered fluxes be available on all four regular faces of
any cell with K > 0. However, some of these faces may be entirely outside the fluid (i.e., a = 0). In these cases
cell-centered data may not be readily available for constructing the extrapolation that generates the double-
valued face flux data. Since there is no valid state data at positions beyond edges outside the domain, a heu-
ristic is used to create so-called ‘‘extended-states’’ in these cells by extrapolating values from just inside the
domain. We use a low-order, volume-weighted average of nearby (full and partial) fluid cells, as prescribed
in Ref. [5], to generate these values.

The final modification in the base scheme is to accommodate the pressure on the fluid exerted by the embed-
ded boundary interface. For the hyperbolic component of the model, this is the only non-trivial component of
the conservation flux that is communicated through the embedded boundary. The wall pressure is obtained by
constructing a special Riemann problem at the interface that represents a reflecting boundary condition for
hyperbolic waves. The update, Eq. (3), is augmented to include this flux modification (suitably scaled by
the area of the embedded boundary interface of that cell).

2.3. Extensions to the base scheme

The base scheme for integration of the compressible Navier–Stokes equations in the Cartesian grid setting
is extended in three ways in order to improve the algorithm’s accuracy in the cut cells, and to incorporate dif-
fusion terms arising when l 6¼ 0 or k 6¼ 0. We outline a procedure for computing diffusion fluxes that is based
on a centered difference approximation to the relevant differential operators. Once computed, the diffusion
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fluxes are treated very similarly to the hyperbolic fluxes above, in terms of the ‘‘reference state’’ computation
and the local redistribution procedure for conservation. We then discuss a simple improvement that increases
the accuracy of the conservation fluxes used to compute the conservative update. The correction is applied to
both the parabolic and hyperbolic fluxes. Finally, a procedure is outlined for the construction of diffusion
fluxes at the embedded boundary due to viscous shear and heat conduction.

2.3.1. Runge–Kutta scheme for diffusion

In order to incorporate diffusion fluxes into the discretization of Eqs. (1), we construct an algorithm based
on centered differences that reverts to a second order, symmetric stable and consistent approximation in the
interior of the domain away from the cut cells along the embedded boundary. It will also remain stable for
K! 0, and will consistently treat the case where the transport coefficients depend on the state (i.e., nonlinear
diffusion). The procedure involves computing a flux divergence analogous to that for the advection fluxes
already discussed. In particular, we define a diffusion flux divergence based on data at tn:
SD;n ¼ 1

V
F D;n

r Ar � F D;n
‘ A‘

� �
þ GD;n

t At � GD;n
b Ab

� �
þ F D;n

EB AEB

� �
; ð4Þ
where AEB is the surface area of embedded boundary interface, and F D;n
EB represents the diffusion flux through

that interface. The boundary flux term will be discussed in the next section. Dropping the time index, n, for sim-
plicity and using FD as an example, we parameterize the diffusive flux as an arbitrary sum of terms involving
$^U, the gradient of U perpendicular to the face, and $iU, the gradient of U tangential to the face, FD =
D(a$^U + b$iU). What remains then is to define the $^ and $i operators, and a procedure for computing D.

The perpendicular gradient approximation at the r,‘ faces of cell (i, j) are evaluated using centered
differences:
r?r Ui;j ¼ ðU iþ1;j � U i;jÞ=Dx; r?‘ U i;j ¼ ðUi;j � U i�1;jÞ=Dx.
Analogous expressions apply for r?t and r?b in the ŷ-direction.
The tangential gradient approximation at the r,‘ faces of cell (i, j) are evaluated using a centered average of

centered differences:
rkr U i;j ¼ 0:5ðU iþ1;jþ1 � U iþ1;j�1 þ Ui;jþ1 � U i;j�1Þ=Dx;

rk‘U i;j ¼ 0:5ðU i;jþ1 � U i;j�1 þ Ui�1;jþ1 � Ui�1;j�1Þ=Dx.
Analogous expressions apply for rkt and rkb.
The temperature-dependent transport coefficients, l and k, are evaluated with state data at the cell centers,

and interpolated to cell edges using a harmonic averaging procedure. In particular, for the x̂-direction faces of
the cell (i, j),
DrðU i;jÞ ¼
1

1=DðU i;jÞ þ 1=DðU iþ1;jÞ
;

D‘ðUi;jÞ ¼
1

1=DðUi�1;jÞ þ 1=DðUi;jÞ
.

Analogous expressions apply for Dt (Ui,j) and Db (Ui,j).
We note that the existence of ‘‘extended states’’, computed for the purposes of constructing the nonconser-

vative ‘‘reference state’’ update discussed in Section 2.2, guarantees that we will have sufficient data defined
‘‘inside’’ the embedded body for computing the above differences and averages.

A two-stage second-order Runge–Kutta method for integrating the diffusion terms with a constant advec-
tion forcing, SA (taken directly from base scheme, as discussed above), may now be defined over a time inter-
val, Dt:
U � ¼ U n � DtðSD;n þ SAÞ;

U nþ1 ¼ U n � Dt
2
ðSD;n þ SD;�Þ � SADt.

ð5Þ
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The iteration defines a predictor–corrector procedure for a trapezoidal time-integration of diffusion terms, and
a midpoint integration for hyperbolic terms. The combined integration is second-order accurate in time and
space, as demonstrated in the next section. This time-explicit integration algorithm for advection and hyper-
bolic terms is stable only for numerical time step sizes satisfying the CFL and diffusional stability criteria:
Dt < min f1

Dx
ðj~vj þ cÞ ;

f2Dx2

2 max l
q ;

k
qCp

� 	
2
4

3
5; ð6Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the local sound speed, and the min and max operations are performed over the entire

computational domain. We take the ‘‘safety’’ factors, f1 = f2 = 0.9 for the examples presented below, and
operate the algorithm in a regime where the advection-based stability condition is most restrictive, unless
otherwise noted.

2.3.2. Flux interpolation

In order to improve the accuracy of the treatment of the cut cells in the present context, we apply the advec-
tion flux interpolation procedure discussed in Ref. [6]. The procedure properly centers the evaluation of the
conservative fluxes at the centroid of the partial cell faces, which are partially obscured by the embedded
boundary. That is, since the cell-centered data are extrapolated along coordinate axes, the fluxes are second
order accurate only at the centers of the underlying uniform grid. Flux values accurate to second order at
the centroid of the partial faces may be constructed simply by linearly interpolating between full-face-centered
fluxes at adjacent faces, as discussed in Refs. [6,7]. The procedure is simple to implement as a post-processing
step after computing fluxes from the Riemann solution and the diffusion fluxes in Eq. (4), dramatically
improves the accuracy of the solution along the embedded boundary, and has no adverse affects on the time
step-size limitation.

2.4. Fluxes at the embedded boundary

To complete the specification of our algorithm for diffusive transport in the presence of an embedded
boundary, we need to define a procedure for computing the parallel and normal components of shear stress
and energy conduction at the wall. The expressions for the stress are particularly simple because the no-slip
condition requires that both components of velocity, and therefore all gradients of velocity along the bound-
ary are zero identically. The nontrivial component of the velocity derivatives relevant to boundary fluxes leads
to the parallel, sEB

k;i;j, and normal, sEB
?;i;j, components of shear stress:
sEB
k;i;j ¼

4

3
li;j

ouk
on

� �EB

i;j

;

sEB
?;i;j ¼ li;j

ou?
on

� �EB

i;j

.

ð7Þ
Here, ui and u^ are the components of the velocity locally parallel and perpendicular to the embedded inter-
face, and o//on is the normal derivative of / evaluated at the centroid of the embedded interface. The viscosity
is evaluated with the state in the partial cell containing the interface. The heat conduction, qEB

i;j , into the embed-
ded boundary is:
qEB
i;j ¼ �ki;j

oT
on

� �EB

i;j

. ð8Þ
The normal derivatives in Eqs. (7) and (8) are estimated using a three-point interpolation formula, which is
second order accurate and stable for fixed Dx, Dy and K! 0. A vector which is normal to the boundary is
located with its origin at the centroid of the embedded boundary interface. The embedded boundary must
be smooth enough to allow this vector to extend into the fluid at least three layers of cells, as shown in
Fig. 1. The state values at the origin of the normal are prescribed from the physical boundary conditions.
The remaining values are computed using parabolic interpolations of the nearby state data, according to



Fig. 1. Parabolic interpolation for estimating a second order temperature gradient normal to the boundary. Wall temperature Tw is
prescribed. Temperatures T1 and T2 are estimated based on the second order interpolation from the values in the open circles. The stencil
of temperatures Tw, T1 and T2 is used for estimating the temperature gradient.
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the prescription in Ref. [7]. These three points are sufficient to define a well-behaved parabola, from which a
slope is evaluated at the embedded interface.

3. Algorithm performance and convergence

We illustrate the performance of our algorithm with two test cases. The first case focuses on the conver-
gence of the algorithm with an isothermal condition implemented at the embedded boundary. The analysis
is based on the propagation of a smooth temperature distribution in a channel not aligned with the underlying
uniform grid. The second case demonstrates the performance of the algorithm in modeling conditions more
specifically relevant to the intended application–simulations of the evolution of an IFE chamber environment.

3.1. Propagation of a smooth isobaric disturbance in a straight channel

The numerical quality of our embedded boundary algorithm may be evaluated by monitoring the evolution
of gas with a nontrivial temperature distribution as it passes through a bounded channel with no-slip, isother-
mal walls. The calculation is performed over the square region shown in Fig. 2, 1.6 m on a side. Within this
area, a straight-wall channel 1 m wide is oriented 30� counter-clockwise from the horizontal axis. This choice
of embedded boundary shape has the advantage of providing a range of partial volumes between 0 and 1
within the domain, while being analytically smooth so as not to pollute the convergence analysis.

Xenon is used as the transport medium, and is treated as an ideal gas with viscosity and conductivity spec-
ified by the Sutherland Law [11]:
gðT Þ ¼ go
T

T o;g

� �1:5 T o;g þ T s;g

T þ T s;g
; ð9Þ
where viscosity, l, or conductivity, k, should be substituted for the general property g. The conductivity-
related constants in this model Ts,k = 320.93 K, To,k = 800 K and ko = 0.0132 W/(m K) were determined by
fitting the experimental data reported in Ref. [12] on the range 800–2000 K. The equivalent constants for vis-
cosity, Ts,l = 320.26 K, To,l = 800 K and lo = 4.88 · 10�5 N s/m2, were based on the experimental data found
in Ref. [13]. The initial flow velocity is fixed at 120 m/s, and is aligned with the walls of the channel. To avoid



Fig. 2. Geometry and initial conditions for the straight channel flow. The temperature field is represented by isothermal lines while the
velocity field is represented by arrows.
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discontinuity between the wall and the fluid, the wall is set to move at the same speed as the initial flow. The
initial pressure is set constant at 100 Pa throughout the domain, and the initial temperature distribution is
prescribed as
Table
Defini

Error

Defini

Discre
T ðx; y; 0Þ ¼ T1 þ 50ð1:0þ cosð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ÞÞ for x2 þ y2

6 ðL=2Þ2;
T1 elsewhere.

(
ð10Þ
In order to approximate the span of conductivity and viscosity in the IFE chamber environment, the temper-
ature of the surrounding gas and channel walls was given the value T1 = 105 K. As the system evolves, the
peak in the temperature profile advects downstream, and heat is conducted through the embedded boundary.
The system was integrated in time for 0.001 s, which is long enough to effect sufficient changes to the solution
to allow a reasonable convergence analysis and short enough to prevent the occurrence of discontinuities. The
final solution qualitatively resembles the initial conditions, depicted in Fig. 2.

The simulation was performed using six consecutive uniform mesh resolutions (the cell size was halved con-
secutively). The coarsest simulation was performed with Dx = 50 mm, corresponding to a 32 · 32 uniform
grid. We define the discretization error, Ei,j, for any state variable Ui,j as
Ei;j ¼ U i;j � U exact
i;j ; ð11Þ
where U exact
i;j represents the ‘‘exact’’ solution, which we take here from 2D quadratic interpolations of the solution

on our finest grid (1024 · 1024). The convergence rate of the algorithm was estimated using the norms L1, L1, L2

as defined in Table 1. As the performance of the algorithm near the embedded boundary will be different from that
of the uniform grid far away from the boundary, a special norm, L2,EB, was also included (see Table 1). For each
norm, the rate of convergence, p, for a grid spacing Dx = Dy = h is calculated from:
1
tion of error norms used for convergence analysis

norm L1 L1 L2 L2,EB

tion max|E| 1
V

R
V E dV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V

R
V E2 dV

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lEB

R
lEB

E2 dl
q

te form max jEn
i;jj

P
i;j

En
i;jKi;jDxDyP

i;j
Ki;jDxDy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j
ðEn

i;jÞ
2Ki;jDxDyP

i;j
Ki;jDxDy

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Ki;j<1

ðEn
i;jÞ

2Ki;jDxP
Ki;j<1

Ki;jDx

s



Table
Error

Grid s

L1,p1
32 · 32
64 · 64
128 · 1
256 · 2
512 · 5

L1,p1

32 · 32
64 · 64
128 · 1
256 · 2
512 · 5

L2,p2

32 · 32
64 · 64
128 · 1
256 · 2
512 · 5

L2,EB,p

32 · 32
64 · 64
128 · 1
256 · 2
512 · 5

Z. Dragojlovic et al. / Journal of Computational Physics 216 (2006) 37–51 45
kEn
i;jk2h

kEn
i;jkh

¼
2h

hexact

� 	p
� 1

h
hexact

� 	p
� 1

; ð12Þ
where hexact is the grid spacing of the finest grid.
In this measure, if the boundary cells show a first-order local convergence rate in grid spacing, while the

interior cells converge at second order, we expect that errors in the L1 norm would show a second-order overall
convergence rate, while the L2 norm would exhibit a rate between first and second order, and the L1 norm would
be first order. However, if the boundary cells converge to second order, the L1 and L2 norm measures should
indicate a convergence rate 2 < p < 3. Rates based on the L1 norm indicates the convergence performance
of the domain’s worst regions, and would show a value of 1 in the former example, but a value of 2 in the
latter.

Convergence rates for the various norms are presented in Table 2. Clearly, the convergence rates for the L1

and L2 measures are consistent with the interpretation that the boundary cells, like the interior cells, are con-
verging at near the designed second-order rate. The values for the L1 norm confirm that all regions in the
calculation are indeed converging near second-order. The values for L2,EB confirm these observations specif-
ically for the cut cells, showing that with increasing resolution, the accuracy of the cut cells approaches second-
order for nearly all the state components.

In this test problem, the energy equation exhibits the slowest convergence rates, particularly in measures
concentrated at the embedded boundary. In fact, the second-order rate expected of the algorithm is not fully
achieved for the energy equation even though the momentum and continuity equations are well-behaved at
this resolution. Evidently, the asymptotic convergence rate is realized for the momentum equation on coarser
grids than for the energy equation. The same test case is analyzed but with the conductivity uniformly
decreased by a factor of four from the values given through Eq. (9). Convergence rates and error norms
2
norms L

*
and their rate of convergence, p

*
for test case of Section 3.1

ize Density x-Momentum y-Momentum Energy

L
*

p
*

L
*

p
*

L
*

p
*

L
*

p
*

3.855 · 10�6 – 4.045 · 10�4 – 2.312 · 10�4 – 3.281 · 10�2 –
1.493 · 10�6 1.348 1.554 · 10�4 1.360 8.957 · 10�5 1.347 1.502 · 10�2 1.089

28 5.182 · 10�7 1.483 5.435 · 10�5 1.471 3.060 · 10�5 1.507 5.717 · 10�3 1.337
56 1.908 · 10�7 1.278 1.986 · 10�5 1.291 1.125 · 10�5 1.280 2.083 · 10�3 1.296
12 5.674 · 10�8 1.241 5.703 · 10�6 1.311 3.176 · 10�6 1.346 8.231 · 10�4 0.615

3.195 · 10�7 – 3.311 · 10�5 – 1.917 · 10�5 – 2.809 · 10�3 –
6.947 · 10�8 2.199 7.189 · 10�6 2.201 4.165 · 10�6 2.200 8.476 · 10�4 1.721

28 1.379 · 10�8 2.323 1.430 · 10�6 2.320 8.386 · 10�7 2.302 3.100 · 10�4 1.401
56 2.609 · 10�9 2.357 2.785 · 10�7 2.313 1.726 · 10�7 2.228 1.186 · 10�4 1.209
12 4.774 · 10�10 2.159 5.481 · 10�8 2.029 4.186 · 10�8 1.643 3.680 · 10�5 1.153

6.124 · 10�7 – 6.361 · 10�5 – 3.671 · 10�5 – 5.094 · 10�3 –
1.589 · 10�7 1.942 1.651 · 10�5 1.942 9.530 · 10�6 1.941 1.561 · 10�3 1.698

28 3.694 · 10�8 2.090 3.842 · 10�6 2.089 2.220 · 10�6 2.087 5.104 · 10�4 1.576
56 7.233 · 10�9 2.304 7.643 · 10�7 2.280 4.506 · 10�7 2.249 1.771 · 10�4 1.381
12 1.164 · 10�9 2.382 1.343 · 10�7 2.230 8.526 · 10�8 2.100 5.399 · 10�5 1.190

2,EB

7.656 · 10�7 – 7.930 · 10�5 – 4.614 · 10�5 – 4.518 · 10�3 –
2.625 · 10�7 1.531 2.724 · 10�5 1.528 1.588 · 10�5 1.525 1.433 · 10�3 1.647

28 9.447 · 10�8 1.426 9.946 · 10�6 1.404 5.799 · 10�6 1.403 6.782 · 10�4 0.976
56 3.322 · 10�8 1.358 3.759 · 10�6 1.231 2.229 · 10�6 1.201 3.927 · 10�4 0.369
12 8.121 · 10�9 1.628 1.157 · 10�6 1.170 6.487 · 10�7 1.284 1.660 · 10�4 0.449
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for this set of calculations are given in Table 3. With this reduced conductivity, the energy equation (and all
others) clearly exhibit second-order convergence.

Such a confirmation could alternatively have been achieved by further refining the solution. However, for
these parameters, the grid spacing would have been such that the diffusion-based criteria in Eq. (6) would have
been more restrictive than the advective CFL condition. We note that this otherwise well-behaved system is
likely to be an ideal candidate for a time-implicit variation of our algorithm. A time-implicit scheme would
require solution of a linear equation set for the diffusive update corresponding to Eq. (5), but could be
constructed as a sequential update to the velocity and energy fields separately, as discussed in Ref. [14], for
example. However, the present algorithm will be perfectly adequate for a broad range of IFE-relevant appli-
cations where such fine grids along the embedded boundary would not be routinely required to achieve accept-
able levels of absolute error. An example of such a problem is the subject of the next section.

Finally, the second-order convergence of our algorithm for this problem may come somewhat as a surprise,
given the lack of error cancellations at the cut cells that is required for second-order accuracy of the centered
differences in the interior of the domain. Johansen [15] presents a modified equation analysis for this diffusion
operator showing that the discrete errors associated with Dirichlet boundary conditions at cut cells exhibit a
dipole-like influence on the solution away from the boundary that decrease with Dx3. This is consistent with
our convergence analyses above, showing that in the asymptotic regime the solution errors become dominated
by our second-order time-discretization and treatment of the advection terms.
3.2. A neutral gas response to high energy target blast for an inertial fusion energy chamber

We have demonstrated second order convergence both inside the domain and at the boundary for our algo-
rithm on a smooth problem. In order to demonstrate the behavior of the algorithm for treating discontinuous
Table 3
Error norms and their rate of convergence (L,p) for test case of Section 3.1 and modified gas propertiesa

Grid size Density x-Momentum y-Momentum Energy

L
*

p
*

L
*

p
*

L
*

p
*

L
*

p
*

L1,p1
32 · 32 3.928 · 10�6 – 4.092 · 10�4 – 2.357 · 10�4 – 2.818 · 10�2 –
64 · 64 1.590 · 10�6 1.280 1.653 · 10�4 1.284 9.541 · 10�5 1.280 1.257 · 10�2 1.130
128 · 128 5.647 · 10�7 1.446 5.876 · 10�5 1.445 3.392 · 10�5 1.445 4.712 · 10�3 1.361
256 · 256 1.776 · 10�7 1.548 1.848 · 10�5 1.548 1.075 · 10�5 1.535 1.582 · 10�3 1.437
512 · 512 4.451 · 10�8 1.580 4.615 · 10�6 1.587 2.622 · 10�6 1.632 3.964 · 10�4 1.580

L1,p1

32 · 32 3.246 · 10�7 – 3.370 · 10�5 – 1.947 · 10�5 – 2.437 · 10�3 –
64 · 64 7.373 · 10�8 2.136 7.649 · 10�6 2.137 4.415 · 10�6 2.138 5.902 · 10�4 2.043
128 · 128 1.596 · 10�8 2.196 1.652 · 10�6 2.199 9.538 · 10�7 2.199 1.496 · 10�4 1.962
256 · 256 3.226 · 10�9 2.255 3.332 · 10�7 2.258 1.931 · 10�7 2.253 4.260 · 10�5 1.713
512 · 512 5.437 · 10�10 2.302 5.600 · 10�8 2.307 3.258 · 10�8 2.301 1.149 · 10�5 1.437

L2,p2

32 · 32 6.239 · 10�7 – 6.482 · 10�5 – 3.742 · 10�5 – 4.613 · 10�3 –
64 · 64 1.691 · 10�7 1.878 1.757 · 10�5 1.878 1.014 · 10�5 1.879 1.280 · 10�3 1.844
128 · 128 4.331 · 10�8 1.946 4.499 · 10�6 1.946 2.595 · 10�6 1.947 3.450 · 10�4 1.869
256 · 256 1.040 · 10�8 1.986 1.081 · 10�6 1.985 6.232 · 10�7 1.986 9.098 · 10�5 1.838
512 · 512 1.928 · 10�9 2.135 2.007 · 10�7 2.134 1.159 · 10�7 2.130 2.093 · 10�5 1.743

L2,EB,p2,EB

32 · 32 7.663 · 10�7 – 7.955 · 10�5 – 4.604 · 10�5 – 5.250 · 10�3 –
64 · 64 2.506 · 10�7 1.602 2.602 · 10�5 1.601 1.507 · 10�5 1.600 1.655 · 10�3 1.656
128 · 128 7.953 · 10�8 1.621 8.283 · 10�6 1.617 4.795 · 10�6 1.617 5.447 · 10�4 1.566
256 · 256 2.387 · 10�8 1.626 2.521 · 10�6 1.603 1.466 · 10�6 1.596 1.827 · 10�4 1.440
512 · 512 5.671 · 10�9 1.682 6.293 · 10�7 1.588 3.615 · 10�7 1.611 5.675 · 10�5 1.151

a l defined in Eq. (9), k reduced by a factor of 4 from Eq. (9).
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profiles, we select a simplified 2D model of an IFE chamber (as described in Section 1). The chamber body is
approximated by a cylinder of radius 6.5 m. Laser beam ports are represented as four beam lines, each 20 m
long and 1 m wide (see Fig. 3). The chamber gas is Xenon, with temperature-dependent viscosity and conduc-
tivity given by Eq. (9). Prior to injecting the target into the chamber, the quiescent gas is at T = 298 K and
p = 6.67 Pa (50 mTorr). A ‘‘direct-drive’’ target yielding 160 MJ [16] is ignited at the center of the chamber,
and heats the Xenon gas through direct X-rays and energetic ion absorption. The ‘‘fast’’ phase of chamber
evolution is modeled prior to shock collisions with the vessel boundary using the 1D radiation-hydrodynamics
code BUCKY [2]. The BUCKY solution profiles at 500 ls for density, velocity and pressure are interpolated
onto a uniform grid to form cylindrically symmetric 2D initial profiles. The 1D profiles of temperature and
pressure shown in Fig. 4 indicate that 500 ls after the initial X-ray heating (and prior to shock/ wall impact),
the hottest regions in the chamber have cooled to under 2 eV. We evolve the system for 15 ms, corresponding
to the time interval needed for the initial pressure wave to traverse several lengths of the chamber diameter.
The boundary conditions at the vessel surface are no-slip wall, with the constant temperature Twall = 973 K.
The state gradients required for estimating the shear stress and heat flux at the wall are resolved by the par-
abolic interpolant described in Ref. [7] and outlined in Section 2.4.

The evolution of pressure and temperature is shown in Fig. 5. The profiles are 4-fold symmetric, so 1/8 of
the domain is sufficient to show the entire solution. The initial position of the shock wave is 40 cm away from
the wall, as shown in Fig. 5a. The elevated temperature ahead of the shock results from the X-ray and ion
energy deposition during the first 500 ls, as computed from BUCKY. Fig. 5b shows the chamber state
5 ms after the solution was advanced by our integration algorithm. The shock is about to hit the wall for
the second time, after initially reflecting from the embedded boundary, converging to the center of the cham-
ber and expanding outward again. The discontinuous profiles remain smooth and sharp. A secondary shock
6.5 m

20 m

1 m

45
o

r

ρ
beam line

initial shock position
from BUCKY output

chamber body

Fig. 3. Geometry of the 4-fold symmetric IFE chamber. One of the four optical access ports is shown in the figure, as well as the initial
position of the shockwave relative to the chamber wall.
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Fig. 4. Initial temperature and pressure for the IFE chamber model. The density, velocity and temperature profiles are obtained as a 1D
solution from a Lagrangian code BUCKY. The solution is interpolated onto the grid before being advanced by the Godunov algorithm.



Fig. 5. Pressure (lower triangular portion of the figure) and temperature (upper portion of the figure) at three different times. A range of
temperatures and pressures from minimum to maximum is provided for each individual case, as shown above. (a) t = 0 s; (b) t = 0.005 s;
(c) t = 0.015 s.
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structure is apparent in the figure and results from the reflection of the initial shock against the entrance to the
beam channels. The core of the chamber is heated from the initial temperature of 5.37 · 104 K to above 105 K
by the compression of the converging shock wave. At 15 ms, the temperature of the core remains hot com-
pared to the near-wall region, as shown in Fig. 5c. The temperature variation between the cold wall and
the hot center causes large variations in viscosity, l (ranging from 5.67 · 10�5 to 9.12 · 10�4 kg/m s) and con-
ductivity, k (ranging from 0.015 to 0.25 W/m K) across the chamber. The geometry of the beam channels ini-
tiates a highly two-dimensional flow field with discontinuities, as seen in Fig. 6.

Strict convergence of the algorithm is difficult to characterize on this problem because of the presence of
discontinuities throughout the solution. In this case, a well behaving algorithm is expected to converge only
globally. An integral error norm of the first order, such as L1 defined in Table 1, would be an appropriate
measure of global convergence since the higher order norms accentuate the behavior in the problem regions
(in our case discontinuities), which are known not to converge. In Table 4, we demonstrate the L1 norms and
their corresponding convergence rates for u and v-velocity components and pressure at three evenly spaced
points in time. The results were obtained for a wide variety of grids, starting from a grid spacing of 16 cm
Fig. 6. Detail of velocity field in the cylindrical portion of the chamber at time t = 15 ms. The streamlines are accompanied by the color
plot of velocity magnitude, which peaks at 1200 m/s (red area). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



Table 4
Error norms L1 and their rate of convergence p1 for test case of Section 3.2

Cell size (cm) u-Velocity v-Velocity Pressure

L1 (m/s) p1 (–) L1 (m/s) p1 (–) L1 (Pa) p1(–)

Time = 0.005 s

16 46.941 – 34.671 – 29.51 –
8 22.065 1.089 15.766 1.137 11.461 1.365
4 14.797 0.576 10.044 0.650 8.021 0.515
2 6.226 1.249 4.939 1.024 5.019 0.676

Time = 0.010 s

16 65.095 – 40.922 – 36.184 –
8 37.198 0.807 22.951 0.834 18.719 0.951
4 19.871 0.905 13.058 0.814 12.413 0.593
2 9.443 1.073 7.049 0.889 6.713 0.887

Time = 0.015 s

16 67.001 – 61.086 – 26.013 –
8 54.103 0.308 28.307 1.110 20.24 0.362
4 34.099 0.666 16.476 0.781 15.612 0.375
2 13.437 1.344 8.005 1.041 7.387 1.080
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and successively refining the grid by a factor of two, until 1 cm was reached. In order not to pollute the anal-
ysis by interpolation from finer to coarser solution, the error En

i;j on each grid was estimated relative to the
conservatively averaged solution from the adjacent finer grid. In this case, the convergence rate corresponding
to a grid spacing h can be estimated as:
V
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/s
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Fig. 7.
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radius.
factor
pðhÞ ¼ log2

kEn
i;jk2h
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. ð13Þ
The data from Table 4 indicate a stable, first order convergence on the entire range of grids considered. The
first order of convergence was expected in the presence of discontinuities and comes as a consequence of not
being able to fully resolve the thermal and viscous transport in such a situation. A slight acceleration in con-
vergence with grid refinement, starting from 4 cm grid spacing is evident from the data and can be explained
by the improved resolution of the near-wall region. Figs. 7a and b show the velocity and temperature profiles
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Profiles of two characteristic state variables in the near-wall region, 15 ms after the target blast. (a) The v-component of velocity
a chamber radius which is at the angle of p/8 with respect to the horizontal axis of symmetry. (b) The temperature along the same
Each of the results is provided for the total of five grids starting with 16 cm cell size and progressively refining the grid spacing by a

of 2, ending with 1 cm cell size. The circles correspond to geometrical places of the cell centers, projected onto the radius.
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near the wall, respectively. The solutions are represented by different grids at time = 15 ms. The plots suggest
that velocities and temperature in this area are fully resolved only by using 2 cm grid spacing or lower. This
may come as a surprise given the fact that the boundary layer at this particular time is relatively wide and one
would expect it to be resolved on the coarser grids, as well. However, one has to keep in mind that the shocks
propagate perpendicular to the boundary layer, which results in periodical compression and expansion of the
latter. This makes it more difficult to compute quantities in the near-wall region and may explain the need for
such fine grids or a reduced convergence rate on the coarser grids. When all the relevant transport phenomena
are resolved, the method converges at the expected second order rate, as demonstrated in Section 3.1.

4. Discussion and conclusions

In this paper, we have presented an algorithm to solve the time-dependent compressible Navier–Stokes
equations in complex 2D geometries. The algorithm has been applied to study the behavior of a simple model
for target chamber dynamics for inertial fusion energy (IFE) in the ‘‘slow phase’’ where hydrodynamic energy
transport processes are important. The problem involves the evolution of discontinuous profiles (shocks), tem-
perature-dependent diffusion transport, and isothermal, no-slip irregular boundaries. The computational
method has been constructed using a Godunov method for advection, a Runge–Kutta method for diffusion,
and an embedded boundary approach to incorporate a flexible geometry capability.

A convergence analysis was performed using a pair of test problems. The first, designed to evaluate the for-
mal convergence properties of the algorithm, was based on smooth initial and boundary data. The results
demonstrated uniform second-order convergence. In order to test the robustness of the algorithm in a context
closer to the intended application, we simulated a two-dimensional model of an IFE chamber. The initial con-
ditions for the test were generated with the BUCKY code, and included a strong radially-outward propagating
shock wave. We simulated 15 ms of the ensuing interaction of this shock wave with the boundary and fluid
environment. The resulting profiles exhibited complex multi-dimensional flow patterns and secondary shock
structures due to interactions with the optical beam channels. A strict convergence analysis of this system was
impossible due to the presence of discontinuities in the initial data and boundary shape. Instead, we monitored
the global behavior of the error in the solution, by the means of the L1 norms, estimated for velocities and
pressure. We found that these quantities behaved reasonably with increased grid resolution. This indicates that
the algorithm is robust enough to be suitable for long time-scale simulations of IFE chambers.

The embedded boundary algorithm presented in this paper shares the geometrical limitations discussed in
Ref. [5]. In particular, long, narrow fin-like (under-resolved) features in the embedded boundary shape are not
correctly represented by the algorithm, which assumes a piecewise linear wall at the resolution of the uniform
grid. The construction of ‘‘extended-states’’ in a data structure that is assumed logically rectangular requires
that several full uniform ‘‘body’’ cells (with K = 0) separate distinct fluid regions, and the interpolation pro-
cedure for evaluating state gradients at Dirichlet boundaries requires that several ‘‘fluid’’ cells (with K = 1)
separate body regions normal to the surface. These limitations notwithstanding, this embedded boundary
implementation has exhibited the appropriate level of geometrical flexibility and accuracy to be used as the
basis of a tool for investigating the slow phase of IFE chamber physics.

From the point of view of investigating IFE chamber scenarios, many additional phenomena should be
incorporated into the model. For example, the chamber fill gas likely includes many distinct chemical constit-
uents, generated by vessel wall ablation for example, during the fast phase and early parts of the slow phase.
The algorithms presented here will extend rather directly to multi-fluid implementations, such as the volume-
of-fluid approach discussed in Ref. [8], or to the mass-fraction approach discussed in Ref. [14]. In addition, our
second example was interesting in that the convergence of blast waves reflected from the chamber wall resulted
in localized heating of the central core region to above 10 eV, suggesting that radiative energy transport may
be an important physical process in the slow phase. As more detailed IFE chamber scenarios are developed,
three-dimensional simulations will become more important, and will require concomitant extensions that
allow local dynamic adaptive mesh refinement. At a more fundamental algorithmic level, there are a number
of detailed improvements, as discussed in recent work [17], which would further enhance the accuracy and
robustness of the Cartesian grid discretization, particularly for hyperbolic wave propagation through the thin
layer of fluid along the embedded boundary. All these improvements are under current development.
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